Homologous pairing of 15q11-13 imprinted domains in brain is developmentally regulated but deficient in Rett and autism samples.
نویسندگان
چکیده
Rett syndrome (RTT), caused by mutations in MECP2 (encoding methyl CpG binding protein 2), and Angelman syndrome (AS), caused by maternal deficiency of chromosome 15q11-13, are autism-spectrum neurodevelopmental disorders. MeCP2 is a transcriptional repressor of methylated genes, but MECP2 mutation does not directly affect the imprinted expression of genes within 15q11-13. We tested a potential role for MeCP2 in the homologous pairing of imprinted 15q11-13 alleles in human brain tissue and differentiated neurons by fluorescence in situ hybridization (FISH). FISH analysis of control cerebral samples demonstrated a significant increase in homologous pairing specific to chromosome 15 from infant to juvenile brain samples. Significant and specific deficiencies in the percentage of paired chromosome 15 alleles were observed in RTT, AS and autism brain samples when compared with normal controls. SH-SY5Y neuroblastoma cells also showed a significant and specific increase in the percentage of chromosome 15q11-13 paired alleles following induced differentiation in vitro. Transfection with a methylated oligonucleotide decoy specifically blocked binding of MeCP2 to the SNURF/SNRPN promoter within 15q11-13 and significantly lowered the percentage of paired 15q11-13 alleles in SH-SY5Y cells. These combined results suggest a role for MeCP2 in chromosome organization in the developing brain and provide a potential mechanistic association between several related neurodevelopmental disorders.
منابع مشابه
15q11-13 GABAA receptor genes are normally biallelically expressed in brain yet are subject to epigenetic dysregulation in autism-spectrum disorders.
Human chromosome 15q11-13 is a complex locus containing imprinted genes as well as a cluster of three GABA(A) receptor subunit (GABR) genes-GABRB3, GABRA5 and GABRG3. Deletion or duplication of 15q11-13 GABR genes occurs in multiple human neurodevelopmental disorders including Prader-Willi syndrome (PWS), Angelman syndrome (AS) and autism. GABRB3 protein expression is also reduced in Rett syndr...
متن کاملEpigenetic overlap in autism-spectrum neurodevelopmental disorders: MECP2 deficiency causes reduced expression of UBE3A and GABRB3.
Autism is a common neurodevelopmental disorder of complex genetic etiology. Rett syndrome, an X-linked dominant disorder caused by MECP2 mutations, and Angelman syndrome, an imprinted disorder caused by maternal 15q11-q13 or UBE3A deficiency, have phenotypic and genetic overlap with autism. MECP2 encodes methyl-CpG-binding protein 2 that acts as a transcriptional repressor for methylated gene c...
متن کاملChromosome 15q11-13 duplication syndrome brain reveals epigenetic alterations in gene expression not predicted from copy number.
BACKGROUND Chromosome 15q11-13 contains a cluster of imprinted genes essential for normal mammalian neurodevelopment. Deficiencies in paternal or maternal 15q11-13 alleles result in Prader-Willi or Angelman syndromes, respectively, and maternal duplications lead to a distinct condition that often includes autism. Overexpression of maternally expressed imprinted genes is predicted to cause 15q11...
متن کاملNeuron-specific impairment of inter-chromosomal pairing and transcription in a novel model of human 15q-duplication syndrome.
Although the etiology of autism remains largely unknown, cytogenetic and genetic studies have implicated maternal copy number gains of 15q11-q13 in 1-3% of autism cases. In order to understand how maternal 15q duplication leads to dysregulation of gene expression and altered chromatin interactions, we used microcell-mediated chromosome transfer to generate a novel maternal 15q duplication model...
متن کاملImprinting regulates mammalian snoRNA-encoding chromatin decondensation and neuronal nucleolar size
Imprinting, non-coding RNA and chromatin organization are modes of epigenetic regulation that modulate gene expression and are necessary for mammalian neurodevelopment. The only two known mammalian clusters of genes encoding small nucleolar RNAs (snoRNAs), SNRPN through UBE3A(15q11-q13/7qC) and GTL2(14q32.2/12qF1), are neuronally expressed, localized to imprinted loci and involved in at least f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Human molecular genetics
دوره 14 6 شماره
صفحات -
تاریخ انتشار 2005